terça-feira, 14 de maio de 2013





Radioatividade...CNSA  - 3º anos...LINK para baixar:

http://www.4shared.com/office/KP01z6xl/radioatividade_oficial_02.html



Radiografia: ferramenta para diagnósticos na medicina.

Quando falamos em energia nuclear, a primeira coisa que vem à nossa mente é algo como bombas atômicas ou armas nucleares. Muitas pessoas fazem a triste associação da radioatividade com apenas coisas negativas, mas a energia nuclear é mais do que isso. Conheça a seguir alguns pontos positivos da radioatividade em nossa vida:

Radiografia

O físico alemão Wilhelm C. Roentgen, no ano de 1895, descobriu uma nova forma de energia capaz de sensibilizar filmes fotográficos protegidos da ação da luz. Essa tecnologia foi batizada de Raios-X, e rapidamente transformou-se em ferramenta para diagnósticos na medicina.

O nome usual para essa tecnologia é radiografia. Quando uma pessoa é submetida à radiografia, é colocada entre o ponto de emissão da radiação e uma chapa fotográfica, ocorrendo uma exposição muito rápida à radiação.  A radiografia tem aplicações importantes na medicina, na indústria da construção mecânica e no estudo físico de metais e das ligas metálicas.

Radioterapia

A radioterapia é um método capaz de destruir células tumorais, empregando feixe de radiações ionizantes, tem capacidade de destruir células, por isso representa hoje uma importante arma no combate ao câncer. A radioterapia pode ser empregada com o objetivo de eliminar totalmente o câncer, visando à cura do paciente, ou para diminuir os sintomas da doença, evitando as possíveis complicações decorrentes da presença e crescimento do tumor.

Para alcançar esses objetivos, a radioterapia pode ser combinada à cirurgia e à quimioterapia, ou mesmo empregada como recurso isolado. Ela funciona do seguinte modo: uma dose pré-calculada de radiação é aplicada em um determinado tempo, a um volume de tecido que engloba o tumor. Essa técnica busca erradicar todas as células tumorais, com o menor dano possível às células normais circunvizinhas. A morte celular pode ocorrer então por variados mecanismos, desde a inativação de sistemas vitais para a célula até sua incapacidade de reprodução.

Esterilização de materiais

Tendo em vista que a radiação pode agredir microrganismos, são usadas também para esterilizar equipamentos médicos, alimentos e soros. O processo não deixa resíduos tóxicos, nem radioativos. Uma das vantagens da técnica é que a esterilização é feita sem aplicações de calor, que pode deteriorar os materiais.

Além dos tratamentos citados acima, há outras importantes utilizações da radioatividade.


Armas nucleares: como tudo começou?




Armas nucleares: como tudo começou?


Considerando que todos saibam da origem da primeira explosão nuclear, não fica difícil saber por onde tudo começou. Foi através dos EUA e aliados no ano de 1945, ao lançar as duas primeiras bombas atômicas no Japão é que o pesadelo teve início. 

Tamanha façanha não poderia passar despercebida aos Russos e com isso a ameaça mundial teve sua continuação. Logo outros países (Reino Unido, França) trataram de garantir armas com o mesmo efeito, foi quando se espalhou a “fórmula do poder”, num mecanismo de autodefesa caso surgissem novas guerras mundiais. 

Até a China teve acesso ao mecanismo de produção de armas nucleares graças ao traidor Klaus Fuchs (cientista e espião alemão). Após ser preso por 10 anos por informações prestadas a seus inimigos políticos, Fuchs deu novamente “com a língua nos dentes”. 

Daí por diante nada mais poderia segurar tal segredo, foi quando os países mais desenvolvidos resolveram criar o “Tratado de Não Proliferação” feito entre 189 nações, excluindo três: Israel, Paquistão e Índia. 

Sendo assim, os Estados Unidos ficaram conhecidos como o país que espalhou esta ideia pelo mundo, seria ele então o maior culpado? 


Emissão alfa (α)

A radiação alfa é positiva, sendo constituída de dois prótons e dois nêutrons. Seu poder de penetração é baixo, causando pequenos danos ao ser humano.




A radiação alfa é composta de dois nêutrons e dois prótons 
A radiação alfa é composta de dois nêutrons e dois prótons

As principais emissões radioativas são a alfa (α), a beta (β) e a gama (γ). Nesse artigo, falaremos sobre a primeira dessas três radiações, como se deu sua descoberta, do que ela é constituída, como a sua radiação afeta a estrutura da matéria, qual o seu poder de penetração e quais são os danos que causa ao ser humano.
  • Descoberta:
Em 1900, independentemente e quase ao mesmo tempo, o físico neozelandês Ernest Rutherford (1871-1937) e o químico francês Pierre Curie (1859-1906) conseguiram identificar experimentalmente as partículas alfa e beta.
Rutherford realizou um experimento que ficou famoso, no qual ele montou uma aparelhagem semelhante à mostrada na ilustração abaixo:
Experimento de Rutherford com partículas alfa
Ele colocou uma amostra de um elemento radioativo em um bloco de chumbo com um orifício. Visto que o chumbo bloqueia as emissões radioativas, elas não se espalhariam pelo ambiente, mas seriam orientadas a sair na direção da única abertura no chumbo. Esse aparelho foi colocado dentro de um recipiente submetido ao vácuo. A esse aparelho foram adaptadas duas placas eletrizadas com cargas opostas – isto é, aplicou-se um potencial elétrico. Na parede oposta ao bloco de chumbo foi colocada uma chapa fotográfica ou uma tela com sulfeto de zinco, material fluorescente, que registraria as emissões radioativas.
Um dos fatores observados com esse experimento foi que o percurso da radiação alfa foi desviado para o polo negativo da placa. Conforme é de conhecimento geral, cargas opostas se atraem, consequentemente, concluiu-se que as radiações alfa são, na realidade, partículas positivas.
  • Constituição:
Com o tempo, descobriu-se que essas partículas positivas são, na verdade,formadas por dois prótons e dois nêutrons (42α2+), isto é, iguais a um núcleo de hélio (42He). Além disso, são partículas pesadas, de massa elevada, pois sofreram desvio pelo campo eletromagnético.
Radiação alfa
  • Consequências da emissão de partículas alfa para a estrutura do átomo:
Conforme sabemos, a emissão de radiação é um processo que acontece a partir do núcleo – daí o termo reações nucleares. Portanto, envolve uma variação da carga nuclear (positiva), causando alterações na substância.
No caso da emissão de uma partícula alfa (42α2+), o número atômico (quantidade de prótons) do átomo diminui duas unidades (porque perdeu dois prótons) e seu número de massa (quantidade de prótons e nêutrons no núcleo) diminui quatro unidades.
Veja como isso ocorre na emissão de uma partícula alfa de um átomo de um elemento genérico (ZAX):
ZAX → 42α2+ + Z-2A-4X
Exemplo:
92238U → 42α2+ + 90234Th
Emissão de partícula alfa
A radiação alfa também tem um poder de ionização alto, podendo capturar dois elétrons e se tornar um átomo de hélio:
42α2+ + 2 e→ 42He
  • Poder de penetração:
A velocidade das partículas alfa é baixa, sendo inicialmente de 3 000 km/s até 30 000 km/s. A sua velocidade média é de aproximadamente 20 000 km/s, que é 5% da velocidade da luz. Por ser lenta, a radiação alfa tem um poder de penetração muito baixo, não atravessando nem mesmo uma folha de papel, roupas ou pele. 
Veja na figura abaixo a comparação do seu poder de penetração com as outras emissões beta e gama:
Poder de penetração das partículas alfa
  • Danos causados ao ser humano:

Em razão do seu baixo poder de penetração, os danos que as partículas alfa causam ao ser humano são pequenos. Quando incidem sobre o nosso corpo, elas são detidas pela camada de células mortas da pele, podendo, no máximo, causar queimaduras.

Emissão beta (β)

As emissões beta são formadas por elétrons emitidos com alta velocidade e, portanto, com alta energia, pelos núcleos.

A radiação beta é a emitida pelo núcleo atômico instável
A radiação beta é a emitida pelo núcleo atômico instável
  • Descoberta:
Conforme dito no texto “Emissão alfa (α)”, o químico neozelandês Ernest Rutherford realizou um experimento no qual colocou uma amostra de um material radioativo em um bloco de chumbo, com um furo para direcionar as emissões radioativas; e submeteu essas radiações a um campo eletromagnético.
Dentre os resultados obtidos, Rutherford percebeu que um feixe de radiações era atraído pela placa positiva, o que o levou a concluir que essas emissões eram decarga negativa. Essa radiação ficou sendo chamada de raios ou emissões beta (β).
Visto que os raios sofriam deflexão quando submetidos a um campo eletromagnético, isso o levou a concluir também que eles eram na verdade compostos por partículas que apresentam massa. A massa dessas partículas, porém, era menor que a das partículas que constituíam as emissões alfa, porque as partículas β sofriam maior desvio.
  • Constituição:
Em 1900, o físico francês Antoine-Henri Bequerel (1852-1908) comparou esses desvios sofridos pelas partículas beta com os desvios que os elétrons realizavam, quando também eram submetidos a um campo eletromagnético. O resultado foi que eram iguais; com isso, viu-se que as partículas beta eram na realidade elétrons.
Em razão disso, a representação dessa partícula é dada por 0-1β ou β-. Veja que a emissão beta apresenta número de massa (A) igual a zero, pois os elétrons não fazem parte do núcleo do átomo.
  • Consequências da emissão de partículas beta para a estrutura do átomo:
A emissão de uma partícula beta (0-1β) é resultado do rearranjo do núcleo instável do átomo radioativo de modo a adquirir estabilidade. Para tanto, ocorre um fenômeno no núcleo, no qual um nêutron se decompõe originando três novas partículas: um próton, um elétron (partícula β) e um neutrino. O antineutrino e o elétron são emitidos; o próton, no entanto, permanece no núcleo.
10n    11p   + 0-1e   + 00ν
nêutron  próton  elétron  neutrino
Dessa forma, quando um átomo emite uma partícula beta, ele se transforma em um novo elemento com o mesmo número de massa (porque o nêutron que havia antes foi “substituído” pelo próton), mas o seu número atômico (Z = prótons no núcleo) aumenta uma unidade.
Veja a seguir como isso ocorre de modo genérico:
Emissão de partícula beta
Veja um exemplo de decaimento beta que ocorre com o isótopo 14 do elemento carbono:
Radiação beta
A radiação beta é constituída de elétrons emitidos à grande velocidade pelos núcleos dos átomos radioativos, sendo que essa velocidade inicial é de 100 000 km/s até 290 000 km/s e chegam a atingir 95% da velocidade da luz.
A massa da radiação β é a mesma de um elétron, que é 1840 vezes menor que a de um próton ou de um nêutron. A radiação alfa (α) emite dois prótons e dois nêutrons, assim a massa das partículas α é 7360 vezes maior que a das partículas β. Isso explica o fato de as partículas α sofrerem um desvio menor que as partículas β, conforme Rutherford havia verificado em seu experimento.
  • Poder de penetração:
Seu poder de penetração é médio, sendo de 50 a 100 vezes mais penetrante que as partículas alfa. Estas podem atravessar uma folha de papel, mas são detidas por uma chapa de chumbo de apenas 2 mm ou de alumínio de 2 cm. Quando incidem no corpo humano, podem penetrar até 2 cm.
  • Danos causados ao ser humano:
Visto que seu poder de penetração sobre o corpo humano é de apenas 2 cm, as partículas β podem penetrar na pele, causando queimaduras, mas são barradas antes de atingir órgãos mais internos do corpo.
Poder de penetração das partículas beta


Emissões gama

As radiações gama são ondas eletromagnéticas com alto poder de penetração, podendo atravessar o corpo humano e causar vários danos.


As emissões gama são o tipo de radiação natural mais energético
As emissões gama são o tipo de radiação natural mais energético
No texto “Emissões alfa (α)” foi citado um experimento realizado por Rutherford, que consistiu basicamente em colocar uma amostra de material radioativo em um bloco de chumbo. Por meio de um furo no bloco e de um campo eletromagnético, orientaram-se as emissões radioativas.
O físico francês Paul Ulrich Villard (1860-1934) repetiu esse experimento – no mesmo ano em que Rutherford o realizou (1900) – e verificou que uma das radiações emitidas não sofria desvio pelo campo eletromagnético. Isso significa que essas emissões não eram constituídas de partículas, como as radiações alfa (α) e beta (β), mas eram, na verdade, radiações eletromagnéticas.
Experimento de Rutherford sobre radiações
Essa radiação eletromagnética emitida pelos elementos radioativos foi denominada radiação gama e representada pela letra grega γ.
Elas são semelhantes aos raios X, não possuindo carga elétrica e nem massa. Porém, são mais energéticas que os raios X, porque seu comprimento de onda é bem menor, ficando entre 0,1 Å e 0,001Å. Elas são capazes de atravessar milhares de metros no ar, folhas de papel, placas de madeira, 15 cm de aço e somente são detidas por placas de chumbo ou por mais de 5 cm de paredes grossas de concreto. 
Além disso, seu alto poder de penetração também se deve ao fato de que, como não possui carga elétrica, não sofre interferência dos elétrons e prótons dos átomos dos materiais que atravessa.
Em razão disso, as emissões gama podem atravessar um corpo humano e causar danos irreparáveis. Quando passa através da matéria, essa radiação interage com as moléculas, resultando em íons e radicais livres, sendo que esses últimos são prejudiciais às células vivas. Algumas células se mostram mais sensíveis, como as do tecido linfático, as da medula, as das membranas mucosas intestinais, as das gônadas e as do cristalino dos olhos.
Veja a seguir o seu poder de penetração em comparação às radiações alfa e beta:
Poder de penetração das radiações alfa, beta e gama
Elas são emitidas pelo núcleo imediatamente após a saída das partículas α ou β. Por isso, mesmo um elemento emissor de partículas alfa pode ser perigoso, pois também emite raios γ.
Radiação gama e beta

Por Jennifer Fogaça
Graduada em Química

Vestibular Brasil Escola




Nenhum comentário:

Postar um comentário